Schizophrenia: The Mystery of the Missing Genes

It's a cliché, but it's true - "schizophrenia genes" are the Holy Grail of modern psychiatry.

Were they to be discovered, such genes would provide clues towards a better understanding of the biology of the disease, and that could lead directly to the development of better medications. It might also allow "genetic counselling" for parents concerned about their children's risk of schizophrenia.

Perhaps most importantly for psychiatrists, the definitive identification of genes for a mental illness would provide cast-iron proof that psychiatric disorders are "real diseases", and that biological psychiatry is a branch of medicine like any other. Schizophrenia, generally thought of as the most purely "biological" of all mental disorders, is the best bet.

With this in mind, let's look at three articles (1,2,3) published in Nature last month to much excited fanfare along the lines of 'Schizophrenia genes discovered!' All three were based on genome-wide association studies (GWAS). In a GWAS, you examine a huge number of genetic variants in the hope that some of them are associated with the disease or trait you're interested in. Several hundred thousand variants per study is standard at the moment. This is the genetic equivalent of trying to find the person responsible for a crime by fingerprinting everyone in town.

The Nature papers were based on three seperate large GWAS projects - the SGENE-plus, the MGS, and the ICS. In total, there were over 8,000 schizophrenia patients and 19,000 healthy controls in these studies - enormous samples by the standards of human genetics research, and large enough that if there were any common genetic variants with even a modest effect on schizophrenia risk, they would probably have found them.

What did they find? On the face of it, not much. The MGS(1) "did not produce genome-wide significant findings...power was adequate in the European-ancestry sample to detect very common risk alleles (30–60% frequency) with genotypic relative risks of approximately 1.3 ...The results indicate that there are few or no single common loci with such large effects on risk." In the SGENE-plus(2), likewise, "None of the markers gave P values smaller than our genome-wide significance threshold".

The ISC study(3) did find one significantly associated variant in the Major Histocompatability Complex (MHC) region on chromosome 6. The MHC is known to be involved in immune function. When the data from all three studies were pooled together, several variants in the same region were also found to be significantly associated with schizophrenia.

Somewhat confusingly, all three papers did this pooling, although they each did it in slightly different ways - the only area in which all three analyses found a result was the MHC region. The SGENE team's analysis, which was larger, also implicated two other, unrelated variants, which were not found in other two papers.

To summarize, three very large studies found just one "schizophrenia gene" even after pooling their data. The variant, or possibly cluster of related ones, is presumably involved in the immune system. Although the authors of the Nature papers made much of this finding, the main news here is that there is at most one common variant which raises the relative risk of schizophrenia by even just 20%. Given that the baseline risk of schizophrenia is about 1%, there is at most one common gene which raises your risk to more than 1.2%. That's it.

So, what does this mean? There are three possibilites. First, it could be that schizophrenia genes are not "common". This possibility is getting a lot of attention at the moment, thanks to a report from a few months back, Walsh et al, suggesting that some cases of schizophrenia are caused by just one rare, high-impact mutation, but a different mutation in each case. In other words, each case of schizophrenia could be genetically almost unique. GWAS studies would be unable to detect such effects.

Second, there could be lots of common variants, each with an effect on risk so tiny that it wasn't found even in these three large projects. The only way to identify them would be to do even bigger studies. The ISC team's paper claims that this is true, on the basis of this graph:

They took all of the variants which were more common in schizophrenics than in controls, even if they were only slightly more common, and totalled up the number of "slight risk" variants each person has.

The graph shows that these "slight risk" markers were more common in people with schizophrenia from two entirely seperate studies, and are also more common in people with bipolar disorder, but were not associated with five medical illnesses like diabetes. This is an interesting result, but these variants must have such a tiny effect on risk that finding them would involve spending an awful lot of time (and money) for questionable benefit.

The third and final possibility is that "schizophrenia" is just less genetic than most psychiatrists think, because the true causes of the disorder are not genetic, and/or because "schizophrenia" is an umbrella term for many different diseases with different causes. This possibility is not talked about much in respectable circles, but if genetics doesn't start giving solid results soon, it may be.

Edit: I missed it at the time but the great Prof. David Colhoun wrote an extremely good piece about this study.


ResearchBlogging.org
Purcell, S., & et Al (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder Nature DOI: 10.1038/nature08185

Shi, J., & et Al (2009). Common variants on chromosome 6p22.1 are associated with schizophrenia Nature DOI: 10.1038/nature08192

Stefansson, H., & et Al (2009). Common variants conferring risk of schizophrenia Nature DOI: 10.1038/nature08186

No Response to "Schizophrenia: The Mystery of the Missing Genes"

Posting Komentar

 
powered by Blogger